[0060] FIG. 5B illustrates a magnetic flux pattern of a segmented rotor switched reluctance machine according to an example embodiment;

[0061] FIG. 5C illustrates a magnetic flux pattern of a segmented rotor switched reluctance machine according to an example embodiment;

[0062] FIG. 6A illustrates a magnetic flux pattern of a segmented double rotor switched reluctance machine according to an example embodiment;

[0063] FIG. 6B illustrates a magnetic flux pattern of a segmented double rotor switched reluctance machine according to an example embodiment;

segmented double rotor SRM

[0064] FIG. 7A illustrates a segmented double rotor switched reluctance machine according to an example embodiment;

[0065] FIG. 7B illustrates a longitudinal section view the switched reluctance machine of FIG. 7A according to an example embodiment;

[0066] FIG. 8A illustrates a segmented double rotor switched reluctance machine according to an example embodiment;

[0067] FIG. 8B illustrates a longitudinal section view the switched reluctance machine of FIG. 8A according to an example embodiment;

[0068] FIG. 9A illustrates a segmented double rotor switched reluctance machine according to an example embodiment;

[0069] FIG. 9B illustrates a longitudinal section view the switched reluctance machine of FIG. 9A according to an example embodiment;

[0070] FIG. 10A illustrates a segmented double rotor switched reluctance machine according to an example embodiment:

[0071] FIG. 10B illustrates a longitudinal section view the switched reluctance machine of FIG. 10A according to an example embodiment;

[0072] FIG. 11A illustrates a segmented double rotor switched reluctance machine according to an example embodiment:

[0073] FIG. 11B illustrates a longitudinal section view the switched reluctance machine of FIG. 11A according to an example embodiment;

[0074] FIG. 12A illustrates a segmented double rotor switched reluctance machine according to an example embodiment;

[0075] FIG. 12B illustrates a longitudinal section view the switched reluctance machine of FIG. 12A according to an example embodiment;

[0076] FIG. 13A illustrates a segmented double rotor switched reluctance machine according to an example embodiment:

[0077] FIG. 13B illustrates a longitudinal section view the switched reluctance machine of FIG. 13A according to an example embodiment;

[0078] FIG. 14A illustrates a segmented double rotor switched reluctance machine according to an example embodiment:

[0079] FIG. 14B illustrates a longitudinal section view the switched reluctance machine of FIG. 14A according to an example embodiment;

[0080] FIG. 15 illustrates a winding configuration of a segmented double rotor switched reluctance machine according to an example embodiment;

[0081] FIG. 16A illustrates a half cross-sectional view of an isolated exterior segmented rotor switched reluctance machine according to an example embodiment;

[0082] FIG. 16B illustrates a half cross-sectional view of an isolated interior segmented rotor switched reluctance machine according to an example embodiment;

[0083] FIG. 17A illustrates a magnetic flux density plot of an isolated exterior segmented rotor switched reluctance machine according to an example embodiment;

[0084] FIG. 17B illustrates a magnetic flux density plot of an exterior machine of a segmented double rotor switched reluctance machine according to an example embodiment;

[0085] FIG. 17C illustrates a magnetic flux density plot of an exterior machine of a segmented double rotor switched reluctance machine according to another example embodiment:

[0086] FIG. 17D illustrates a magnetic flux density plot of an isolated interior segmented rotor switched reluctance machine according to an example embodiment;

[0087] FIG. 17E illustrates a magnetic flux density plot of an interior machine of a segmented double rotor switched reluctance machine according to an example embodiment;

[0088] FIG. 17F illustrates a magnetic flux density plot of an interior machine of a segmented double rotor switched reluctance machine according to another example embodiment:

[0089] FIG. 18A illustrates a graphical representation of a coupling effect of an exterior machine inductance when adjacent phases are excited according to an example embodiment;

[0090] FIG. 18B illustrates a graphical representation of a coupling effect of an exterior machine inductance when same phases are excited according to an example embodiment;

[0091] FIG. 19A illustrates a graphical representation of a coupling effect of an exterior machine torque when adjacent phases are excited according to an example embodiment;

[0092] FIG. 19B illustrates a graphical representation of a coupling effect of an exterior machine torque when same phases are excited according to an example embodiment;

[0093] FIG. 20A illustrates a graphical representation of a coupling effect of an interior machine inductance when adjacent phases are excited according to an example embodiment;

[0094] FIG. 20B illustrates a graphical representation of a coupling effect of an interior machine inductance when same phases are excited according to an example embodiment;

[0095] FIG. 21A illustrates a graphical representation of a coupling effect of an interior machine torque when adjacent phases are excited according to an example embodiment;

[0096] FIG. 21B illustrates a graphical representation of a coupling effect of an interior machine torque when same phases are excited according to an example embodiment;

[0097] FIG. 22 illustrates a longitudinal section of a segmented double rotor segmented reluctance machine according to an example embodiment;

[0098] FIG. 23A illustrates a graphical representation of a static torque measurement of an interior machine according to an example embodiment;

[0099] FIG. 23B illustrates a graphical representation of a static torque measurement of an exterior machine according to an example embodiment;